How to Transpose a Data Frame in R

by | Programming, R, Tips

The easiest way to transpose a data frame is to use the transpose() function from the data.table library. For example,

library(data.table)

# get data
data("mtcars")

# transpose
t_mtcars <- transpose(mtcars)

# get row and colnames in order
colnames(t_mtcars) <- rownames(mtcars)
rownames(t_mtcars) <- colnames(mtcars)

Ensure that you set the row and column names to match the transposed rows and columns.

This tutorial will go through two ways of transposing a data frame in R with code examples.


Get Transpose of a Data Frame Using the t() function

Consider the following data frame:

# Define data frame
df <- data.frame(x = c(1, 3, 5, 7, 9, 11),
y=c(2, 4, 6, 8, 10, 12),
z=c(5, 10, 15, 20, 25, 30))

# Set row names of data frame
row.names(df) <- c('A', 'B', 'C', 'D', 'E', 'F')

# Print data frame
print(df)
   x  y  z
A  1  2  5
B  3  4 10
C  5  6 15
D  7  8 20
E  9 10 25
F 11 12 30

We can use the base R t() function to transpose the data frame. When using the t() function the row and column names are switched automatically.

# Transpose of data frame
df_t <- t(df)

print(df_t)
 A  B  C  D  E  F
x 1  3  5  7  9 11
y 2  4  6  8 10 12
z 5 10 15 20 25 30

Get Transpose of a Data Frame Using data.table

Consider the mtcars dataset:

# Get first 6 rows of data frame

head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

We can use the transpose() function from the data.table package:

Note, that we need to set the row and column names to match the transposed data frame.

# Transpose data frame 
t_mtcars <-transpose(mtcars)

# Redefine row and column names
colnames(t_mtcars) <- rownames(mtcars)
rownames(t_mtcars) <- colnames(mtcars)

# Print first 5 columns of data frame
head(t_mtcars[, 1:5])

Let’s run the code to see the transposed data frame.

  Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout
mpg      21.00        21.000      22.80         21.400             18.70
cyl       6.00         6.000       4.00          6.000              8.00
disp    160.00       160.000     108.00        258.000            360.00
hp      110.00       110.000      93.00        110.000            175.00
drat      3.90         3.900       3.85          3.080              3.15
wt        2.62         2.875       2.32          3.215              3.44

We can see that the columns are the automobile names and the rows are the aspects of automobile design.

Get Transpose of a Data Frame Using tidyverse

We can also get the transpose of a data frame using the tidyverse package. First, consider the mtcars dataset:

# Get first 6 rows of data frame

head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

We can use the rownames_to_column function with gather and spread to transpose the data frame as follows:

install.packages("tidyverse")
library(tidyverse)

t_mtcars<- mtcars %>%
   rownames_to_column %>% 
   gather(var, value, -rowname) %>% 
   spread(rowname, value) 

rownames(t_mtcars) <- colnames(mtcars)

print(t_mtcars)

Let’s run the code to get the transposed data frame:

   var AMC Javelin Cadillac Fleetwood Camaro Z28 Chrysler Imperial Datsun 710
mpg    am       0.000               0.00       0.00             0.000       1.00
cyl  carb       2.000               4.00       4.00             4.000       1.00
disp  cyl       8.000               8.00       8.00             8.000       4.00
hp   disp     304.000             472.00     350.00           440.000     108.00
drat drat       3.150               2.93       3.73             3.230       3.85
wt   gear       3.000               3.00       3.00             3.000       4.00
qsec   hp     150.000             205.00     245.00           230.000      93.00
vs    mpg      15.200              10.40      13.30            14.700      22.80
am   qsec      17.300              17.98      15.41            17.420      18.61
gear   vs       0.000               0.00       0.00             0.000       1.00
carb   wt       3.435               5.25       3.84             5.345       2.32

We can also use the pivot_longer and pivot_wider as follows:

mtcars %>%
   tibble::rownames_to_column() %>%  
   pivot_longer(-rowname) %>% 
   pivot_wider(names_from=rowname, values_from=value) 

Let’s run the code to get the transposed data frame.

# A tibble: 11 × 33
   name  `Mazda RX4` `Mazda RX4 Wag` `Datsun 710` `Hornet 4 Drive` `Hornet Sportabout`
   <chr>       <dbl>           <dbl>        <dbl>            <dbl>               <dbl>
 1 mpg         21              21           22.8             21.4                18.7 
 2 cyl          6               6            4                6                   8   
 3 disp       160             160          108              258                 360   
 4 hp         110             110           93              110                 175   
 5 drat         3.9             3.9          3.85             3.08                3.15
 6 wt           2.62            2.88         2.32             3.22                3.44
 7 qsec        16.5            17.0         18.6             19.4                17.0 
 8 vs           0               0            1                1                   0   
 9 am           1               1            1                0                   0   
10 gear         4               4            4                3                   3   
11 carb         4               4            1                1                   2   
# … with 27 more variables: Valiant <dbl>, `Duster 360` <dbl>, `Merc 240D` <dbl>,
#   `Merc 230` <dbl>, `Merc 280` <dbl>, `Merc 280C` <dbl>, `Merc 450SE` <dbl>,
#   `Merc 450SL` <dbl>, `Merc 450SLC` <dbl>, `Cadillac Fleetwood` <dbl>,
#   `Lincoln Continental` <dbl>, `Chrysler Imperial` <dbl>, `Fiat 128` <dbl>,
#   `Honda Civic` <dbl>, `Toyota Corolla` <dbl>, `Toyota Corona` <dbl>,
#   `Dodge Challenger` <dbl>, `AMC Javelin` <dbl>, `Camaro Z28` <dbl>,
#   `Pontiac Firebird` <dbl>, `Fiat X1-9` <dbl>, `Porsche 914-2` <dbl>, …

Summary

Congratulations on reading to the end of this tutorial!

For further reading on R, go to the articles: 

Go to the online courses page on R to learn more about coding in R for data science and machine learning.

Have fun and happy researching!

Profile Picture
Senior Advisor, Data Science | [email protected] | + posts

Suf is a senior advisor in data science with deep expertise in Natural Language Processing, Complex Networks, and Anomaly Detection. Formerly a postdoctoral research fellow, he applied advanced physics techniques to tackle real-world, data-heavy industry challenges. Before that, he was a particle physicist at the ATLAS Experiment of the Large Hadron Collider. Now, he’s focused on bringing more fun and curiosity to the world of science and research online.

Buy Me a Coffee